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An expansion procedure using the Chebyshev polynomials as base functions is proposed. 
The method yields more accurate results than either of the Galerkin or tau methods as 
indicated from solving the Orr-Sommerfeld equation for both the plane Poiseuille flow and 
the Blasius velocity profile. The Chebyshev approximation is also applied to resolve the radial 
dependence of the flow field for a circular cylinder or a sphere in a uniform flow. 

1. INTRODUCTION 

The use of Chebyshev polynomial approximations for the solution of boundary 
value problems in fluid mechanics has been advocated and developed by Orszag [ 1 ]. 
These approximations, which include the Galerkin and tau spectral methods and the 
pseudospectral collocation method, are discussed in detail by Gottlieb and Orszag 
121. In this paper we propose a spectral procedure based on the Galerkin method 
which employs the Chebyshev polynomials and yields more accurate results than the 
tau method for the same computer requirement. Moreover, this expansion procedure 
is capable of handling nonhomogeneous boundary conditions directly. 

In Section 2 we solve the Orr-Sommerfeld equation. Here we introduce the 
representation procedure and the necessary recurrence relations which are listed in 
the Appendix. We also show how this spectral method may be applied to boundary 
value problems by solving the Blasius equation. Comparison of the eigenvalues for 
either of the plane Poiseuille flow or the Blasius velocity profile with those computed 
by Orszag [3] and Grosch and Orszag [4] using the tau method indicates that we 
obtain higher accuracy with the same number of expansion coefftcients. 

The solution of the Navier-Stokes equations for a circular cylinder in a uniform 
flow of an incompressible fluid is considered in Section 3. A general formulation for 
the problem is presented and the steady two-dimensional flow is produced by a sine 
series (Dennis and Chang [5]) representation in the azimuthal direction and a 
Chebyshev approximation in the radial direction. The analogous case of a sphere in a 
uniform flow is considered in Section 4. For the steady axisymmetric flow field we 
use a Legendre series (Dennis and Walker 161) in the latitudinal direction and the 
Chebyshev representation in the radial direction. Thus, in both cases, the problem 
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was reduced to a nonlinear algebraic system of equations in the expansion coef- 
ficients which were solved by Newton iteration. We were able to produce accurate 
solutions for values of the Reynolds number less than those required for laminar 
separation in either case. Because all computations were performed on a VAX-l l/ 
780 computer we did not compute accurate solutions at higher values of the Reynolds 
numbers as this would require impractical computer time. However, in the conclusion 
we discuss how the observed instabilities of these restricted classes of solutions at 
higher Reynolds numbers may be predicted by linear stability methods. 

2. ORR-SOMMERFELD EQUATION 

Linear stability analysis of an incompressible parallel shear flow U(z), -1 < z < 1, 
to two-dimensional perturbations of the form 

~(4 e 
iacx-ct) 

leads to the Orr-Sommerfeld equation 

Y (4) - 2a2lp’ + cf4y - iaR [(U - c)(y/‘2’ - a2y) - U’%y] = 0, (2.la) 

w=li/ (1) =o at z-*1, (2.lb) 

where a and c are the disturbance wavenumber and complex wave speed, respectively. 
All quantities are dimensionless and R is the Reynolds number. Superscript numbers 
in parenthesis on functions of z indicate derivatives with respect to z. 

In the Galerkin or tau methods one assumes a representation for y(z) in terms of 
Chebyshev polynomials T,(z). The representations of the derivatives of v/(z) are then 
obtained by use of the identities [3] 

2T,, = 
c T(l) n d n-2 -~ ntl 

T(l) 
n+l n-1 n-l 1 (2.2a) 

2zT,,=C,T,,, +d,-,T,-,, (2.2b) 

where C,=d,=O if n<O, C,=2, d,= 1, C,=d,= 1 if n>O. Here we assume a 
representation for the highest derivative of II/ in (2.1) of the form 

Y (4’ = \’ ajTj. 
jzl 

(2.3a) 

The representations of the lower derivatives are found by successive integration and 
use of (2.2) 

(2.3b) 
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Nt2 N 

w 
(2’ = \‘ r f$‘aiTj + C, T, + C,T,, 

~‘50 i=O 
N+3 N 

v 
(1’ = -y- ‘r‘ 

,~o i~o fji”ai Tj + $!- 7’2 + C2 T, + C3 To 3 
- 

(2.3~) 

(2.3d) 

Nt4 N 

I//= L y r;!P)a,T,+C, 

j=O i=O 
24 T3+-!$-T2+(C,-%j T,+C,T,. (2.3e) 

The constants fj/‘, p = 0, 1, 2, 3, are listed in the Appendix, and the constants of 
integration C, , C,, C, , and C, are determined in terms of the expansion coefficients 
a, so that the boundary conditions (2.lb) are satisfied, we find 

Cl = T +[(fJ;“’ - ajo’) - (@ + p)] a;, 
i=O 

c, = e -#” - ,-!I)] a. 
1 1) 

i=O 

c, = ,io -g3<uy - fp) + (aj” + rJj”)l a,, 

c, = lgo +[-(u;“’ + c$O’) + ~(u;” - aj”)] ai, 

where 

.v+4-4 N+4--4 
u(o) - \l 

I - 
j=u 

f!P’ 
Jl ’ 

(sj(D) - \‘ 
I - 

j=o 
(-1)‘f i”‘, p=o, 1,2,3. 

(2.4a) 

(2.4b) 

(2.4~) 

(2.4d) 

(2.4e) 

Upon substitution of (2.4ak(2.4d) into (2.3bk(2.3e) we may conveniently rewrite 
the expansions (2.3b)-(2.3e) in the forms 

)V + 4 fl N 
(8) = \‘ \‘ 

w - I g,jP’ai rj 3 B = 0, 1, 2, 3, (2Sa) 
.i=o i&O 

where, for example, 

and with similar expressions for gj”‘, /3 = 0, 1, 2. The idea of assuming a represen- 
tation for the derivative rather than for the function has been used (Jeffreys and 
Jeffreys [7, p. 4411) to examine term-by-term differentiation of a Fourier series for the 
function at a point of discontinuity of the derivative. However, in addition to uniform 
convergence [ 11, our motivation for the scheme in (2.3) is twofold: to obtain an 
N + 4 truncation for y/ using only N expansion coeffkients thus higher accuracy than 
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a corresponding tau expansion; and simultaneously satisfying all the boundary 
conditions on w and its derivatives. We also assume that the basic flow is given by 

.Nbt2-4 

iP’(z) = y by’T,(z), p=o, 1,2. (2.6) 
n=O 

The usual Galerkin procedure then leads to the matrix eigenvalue problem 

& (dik - 2a’gji’ + a4gj,0’) - 
,YhiZ iv+2 

k=O 

Nb+2 N+4 >Nh N + 4 

+a2 L’ _ L‘ &jbjo’g,;;’ + “ \‘ Piljbj2)g$’ 
I=0 .,ro /To ,?‘I 

-c \’ [gj:’ - a’g~~‘] akr 
k=n 

i = 0, 1,. .., N, (2.7) 

where 

Bijj=$i+j’ (1 -Z2)--"2 TiT,Tjdz 
I 

6,,,+j+~(6i,ij+Si,j-,) 3 
I I 

(2.8) 

which follows from the identity 

2TjT,= Tj+, + T,j-,i. 

Numerical solution of the matrix eigenvalue problem (2.7) is obtained using the 
IMSL routine EIGZC. 

2.1. Plane Poiseuille Flow 

Here U(z) = 1 -z*. It follows that in (2.6) we have 

Nb= 1, b;” = (4, 0, -;), and bc2’ = -2 
0 

For the plane Poiseuille flow, the eigenfunctions are either symmetric or asymmetric 
about z = 0. In Table I we show the most unstable eigenvalue (which corresponds to 
a symmetric eigenfunction) computed here and in [3] for a = 1 and R = 10,000. This 
shows that the tau method requires solution of a 29 x 29 algebraic system while we 
need only solve a 25 x 25 system to converge to the “exact value” 0.23752649 + 
0.00373967i [3]. Although this may seem a minor gain, it is important when solving 
partial differential systems. Not unlike other methods [2] of computing the eigen- 
values of the Orr-Sommerfeld equation we also find two spurious eigensolutions with 
one eigenfunction symmetric and the other asymmetric about z = 0. 
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TABLE I 

The Most Unstable Eigenvalue of Plane Poiseuille Flow 
for a = 1, R = 10000 

Orszag [3] Present Results 

14 0.23713751 + 0.00563644i 0.23757046 + 0.003746101 
15 0.23690887 + 0.00365516i 0.23743315 + 0.00372248i 
17 0.23743315 + 0.00372248i 0.23752392 tO.OO375328i 
20 0.23752676 f 0.003734271 0.23752595 t 0.003739081 
23 0.23752670 + 0.003739821 0.23752651 + 0.003739681 
24 0.23752648 t 0.003739671 
25 0.23752649 + 0.003739671 
26 0.23752648 + 0.00373967i 0.23752649 + 0.00373967i 
29 0.23752649 t 0.003739671 0.23752649 + 0.003739671 

” M is the number of expansion coefficients. 

2.2. Blasius Velocity Profile 

In order to represent the basic flow in the form (2.6) we first consider the Blasius 
equation for f(v) 

f”’ + ff” = 0, (2.9a) 

f(O) = f’(0) = 0, f’(v- a)- 1. (2.9b) 

We will solve (2.9) by the Chebyshev method. The infinity condition will be invoked 
at a finite value of q = q,. First, let 

+ = (z + 1)/L -l<z<l. 
e 

(2.10) 

then f(z) satisfies 

(2.1 la) 

j--l) = f’i’(-1) = 0, f”‘( 1) = r,/2. (2.1 lb) 

Now we assume the representation 

f c3’ = \“’ cjTj. 
jr0 

(2.12a) 

Integrating (2.12a) and invoking the boundary conditions (2.1lb), we have 

Nb+3-D Nb f (5) = k’ \,‘ hj!+Jj + + dj5’Tj, 
]frO - ,z 

p=o, 1,2, (2.13) 
I=0 

where h!P’ are the constantsf!!+i) modified to satisfy the homogeneous version of 
the boundary conditions (2.1 lbj in a manner similar to that leading to (2.5) and dj4’ 
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TABLE II 

The Most Unstable Eigenvalue of the Blasius Profile 
for a = 0.179. R = 580 

rlr N--l Grosch and Orszag [ 4 1 Present Results 

10 36 0.367590 + 0.0064292’ 
44 0.378877 + 0.00025Oi 0.367591 + 0.0064291’ 

20 36 0.364034 + 0.0079201’ 
44 0.364557 t 0.007773i 0.364143 + 0.0079591 
46 0.364551 t 0.007781i 0.364137 t 0.007934i 

30 40 0.362681 + 0.0090521’ 
42 0.363419 + 0.0078591’ 
44 0.363996 + 0.0078881’ 0.363997 t 0.007903i 

depend only on qe. The usual Galerkin procedure applied to (2.1 la) reduces the 
problem to a nonlinear algebraic system in the expansion coefficients cj which we 
solve by Newton iteration. It should be noted that the basic flow U(z) in (2.la) is 
related tof(z) by 

U(z) = f”‘(z), 

so that bjD’ in (2.7) are determined in terms of cj. In Table II we list the single 
unstable eigenvalue for the case R = 580 and a = 0.179 (because of the transfor- 
mation (2.10) the values of a and R used to solve (2.7) are 0.179~,/,/? and 580 d2, 
respectively) as well as those of [4] for values of 7, = 10, 20, and 30 (the 
corresponding values of N, used are 20, 30, and 40, respectively). We emphasize that 
both our results and those of [4] in Table II represent the solution of the same 
differential system with identical treatment of the infinity boundary conditions. 
However, while we solve the Blasius equation by a spectral procedure, Grosch and 
Orszag 14) use collocation. Again, we better approximate the “exact value” 
0.36412286 + 0.007959721 than the tau method, in particular, with I], = 10. This 
time we always find two spurious eigensolutions. 

3. CIRCULAR CYLINDER IN UNIFORM FLOW 

The nondimensional Navier-Stokes equations are 

(3.la) 

(3. lb) 
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where the Reynolds number R = 2Ub/v, and b is the radius of a cylinder in a uniform 
stream U of an incompressible fluid with kinematic viscosity v. The motion is referred 
to the cylinderical coordinate system (r, 0, y) of Fig. 1. The boundary conditions are 

V(L 0, Y, t> = 0, (3.2a) 

V(r, 0, y, t> = V(r, e + 271, y, t), (3.2b) 

V(r+ CO, 19, y, t)- (-cos 8, sin e,O). (3.2~) 

Taking the curl of (3.lb) twice and using (3.la) leads to 

(3.3b) 

where the vorticity o = V x V. The y component of (3.3a), (3.3b) are 

a 
at w,=~v2coy+~y.vX(VXW), 

~v2v,=~v4vy-2y.vx[vx(vxw)], (3.4b) 

where subscripts denote components and eY is a unit vector in the y direction. We 
represent the solenoidal vector velocity field in terms of two scalar functions Cp and Y 
(Chandrasekhar [8, p. 241) as 

v = v x (Yi$) + v x (V x a@,), (3.5) 

If we look for two-dimensional solutions 

a 
- 0, &- v, = 0, 

1 

FIG. 1. The cylindrical (r, 8, JJ) and spherical (r, 8, 4) coordinate systems. 
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then CD E 0 and Y(r, 8, t) is simply the streamfunction, and we need only solve (3.4a). 
The basic steady flow is assumed to have the symmetry given by 

Y(r, S) = - Y(r, 4). (3.6) 

The general formulation of the problem in (3.4) and (3.5) would allow one to study 
the instability of the basic flow in (3.6) to different classes of perturbations. 

The Fourier sine series representation [ 51 for !P(r, 0) 

Y = z fn(r) &ii sin ~219, 
n=l 

(3.7) 

is used in (3.4a) to yield 

(3.8a) 

where 

A = 2-- GL-l, - 4L,+m)~ 
*‘In @ii 

(3.8b) 

(3.8~) 

and primes are derivatives with respect to r. The boundary conditions satisfied by 
f,(r), from (3.2a), (3.2c), (3.5), and (3.7) are 

f,= j-:,=0 at r= 1, (3.9a) 

fn--JGjTr~,n as r+ 03. (3.9b) 

We will solve (3.8), (3.9) by replacing the infinite range of r with a finite one. For the 
boundary conditions at infinity we invoke the least restrictive or soft boundary 
conditions (see Fornberg [9]) 

f (, = 7/w 4” and fr =0 at r=e’, (3.9c) 

for some value of a. These boundary conditions may be deduced from the asymptotic 
form (Underwood [lo]) 

fn-a,r 2-n + b,r-“, (3.9d) 

which is valid far from the body. The transformation 

r = p/z)(r+ 1) 3 -l<z<l, (3.10) 
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TABLE III 

Some Properties of the Solution for a Cylinder in a Uniform Flow 

Dennis and Chang [ 5 ] Present Results” 

R Cd p,-pi p,-p, Cd p,-PI prp, Pb - p* P, ~ PI 

1 10.693 1.988 -1.368 -1.396 0.003 
2 6.855 1.372 -0.825 -0.818 0.001 
5 4.116 0.936 -0.522 4.103 0.918 -0.595 -0.537 0.000 

’ The truncations N,, N,, and VAX-l 1 computer time per iteration for R = I, 2, 5 are, respectively, 
19, 10, 7 min, 25, 14, 34 min, and 28, 20, 140 min. 

is applied to (3.8) and forf,(z) we assume 

j-j”‘(z) = 5 
alj Tj(z)* (3.1 la) 

j=O 

Integration of (3.1 la) and applying the boundary conditions (3.9a), (3.9~) leads to 
the representations 

N,+4-L? N, 

f15’(z>= T 
JZO i=O 

(3.1 lb) 

where gj”’ arefj”’ modified to satisfy the homogeneous version of (3.9a), (3.9~) and 
bj4’ are functions only of the transformation parameter a in (3.10). We now use 
(3.1 I), (3.8), and (3.10) to derive a nonlinear algebraic system for a,i of the form 

No Nr No A'. 

= \‘ ‘T L7 \‘ Nlimjnkamjank, 
my1 j=O ,=I k(C) 

I= l,..., N,, i=O, l,..., N,, (3.12) 

where the constants L, B, and N in (3.12) include contributions from gj,!’ and bj” in 
(3.11b) and the Reynolds number R. The solution to (3.12) is obtained by Newton 
method in about 3-5 iterations depending on the initial guess. 

In Table III we show some properties of the solutions as well as computer time 
requirement at different resolutions N, and N,. The results given are for a = 5 which 
we find satisfactory by recomputing the flow fields at a = 5.1. Here cd is the drag 
coefficient and the pressure differences Pf- P, and P, - Pf are obtained by 
integration of (3. lb) along the contours 0 = 0 and r = 1. The pressure differences 
P, - P, and P, -P, are obtained by integration along 8 = rr and r = ea. The points 1, 
f, b, and 2 are as indicated in Fig. 1. We find that the best measure of the accuracy of 
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the representation is the value of P, as obtained by the two integration procedures. 
The agreement between our results at R = 5 with those computed by Dennis and 
Chang [.5] at the same value of N, is reasonable, the differences are attributed to the 
treatment of the infinity boundary conditions. 

4. SPHERE IN A UNIFORM FLOW 

The motion is referred to the spherical coordinate system (Y, 19,4) of Fig. 1. ‘The 
equations of motion are (3.3) and in addition to the boundary conditions (3.2a), 
(3.2~) we also require that V be finite at 8 = 0, rt. The operation r . applied to (3.3) 
gives 

; (r-o,) =; v*(ro,) + r. v x (V x o), (4.1 a) 

; (VW,) = f V”(rV,) -r * v x [V x (V x 0)) (4.lb) 

We represent the solenoidal vector velocity field in terms of a poloidal scalar S and a 
toroidal scalar T [8, Appendix III] as 

V = V x (Te^,) + V x (V x S@,), (4.2) 

where e^, is a unit vector in the radial direction. For axisymmetric motions 

a 
- 0, 2j- v, = 0, 

so that T s 0 and -sin e(aS/H) . IS a streamfunction and we need only solve (4.1 b). 
The general formulation of the problem in (4.1), (4.2) would allow one to study the 
instability of a basic steady, axisymmetric solution. For such a basic state the 
representation [ 61 

S(r, e) = F t-f&) P,(COS e), 
n=, 

where P,(x) are normalized Legendre polynomials, is used in (4.lb) to give 

GOi = : 5 Cnlm (fnD,fm>’ + C,nm WJ’ Dmfm 
n=l rn=l r r* ’ 

(4.3) 

(4.4a) 

where 

2 d 1(Z + 1) D’=$+----T I 
(4.4b) 
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TABLE IV 

Some Properties of the Solution for a Sphere in a Uniform Flow 

Dennis and Walker [ 6 1 Present Results” 

R Cd pr-PI Pb -PI Cd p,-pi p,-PI P, ~ P? 

I 13.72 3.876 -3.008 13.78 3.877 -3.037 -2.99 I 
5 3.605 1.299 -0.60 1 3.617 1.282 -0.652 -0.562 

10 2.212 0.939 -0.327 2.207 0.900 -0.378 -0.244 

’ The truncations N,, N,, and VAX-l I computer times in min/iteration are 15, 6, 2; 19, 14. 40: and 
23, 16. 105 for R = 1, 5, 10, respectively. 

and 

C nlm = - ’ ‘@+ ‘) I/(/+ l)+m(m+ 1)-n@+ l)] o’,,p,P&. 
2 (1 + 1) 

(4.4c) 

As in the case of the cylinder (3.9a), (3.9~) the boundary conditions we use are 

fr=fi=O at r= 1, (4.5a) 

j-; =A&,, 
fi 

f;“=O at r=ea. 

Equations (4.4), (4.5) are solved in exactly the same way we solved (3.8), (3.9a), 
(3.9~). We use the transformation (3.10) and expansions similar to (3.11) and finally 
arrive at a nonlinear algebraic system similar to (3.12). 

The numerical results for the sphere are given in Table IV for a = 5. In this case 
we need more computer time than we did for the cylinder since there are more 
nonlinear contributions to compute (compare C in (4.4~) with A in (3.8~)). Also 
shown are the results of Dennis and Walker [ 61 computed at the same values of N,. 
As was the case for the cylinder we find that the overall accuracy of the represen- 
tation may be inferred from the value of P, as obtained by different integration 
procedures. Note that P, -P, is less than 1O-4 for all the results presented. We 
should also add that the values of the drag coefficient for the cylinder or the sphere 
can be reasonably determined using smaller truncations than those shown in 
Tables III and IV. 

5. CONCLUSION 

We have presented an expansion procedure which employs the Chebyshev 
polynomials as base functions. Because we assume a representation for the highest 
derivative of the dependent variable we are able to obtain higher accuracy than the 
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tau method (for the same computer requirement) as evidenced by the solution of the 
Orr-Sommerfeld equation. Application of the Chebyshev approximation to the 
resolution of the radial direction of the flow field of a cylinder or a sphere in a 
uniform flow is also presented. Although it is difficult to compare the economy in 
computer requirement as well as accuracy with other numerical methods, 
semianalytic representations of a flow field have an important advantage; linear 
stability methods can be applied in a straightforward manner to investigate the 
experimentally observed instabilities. For the cylinder, we may linearize the scalars @ 
and Y about the basic solutions in (3.7). Likewise, for the sphere we may linearize 
the scalars S and T about the basic solution in (4.3). One may then restrict the 
stability analysis to different classes of disturbances, this is the usual approach in 
studying cylindrical convective systems (Charlson and Sani [ 111) and spherical 
systems (Zebib, Schubert, and Straus [ 121). However, we must be able to produce 
accurate basic solutions for values of the Reynolds number about 40 for the cylinder 
and 170 for the sphere before this stability analysis can be performed. 

APPENDIX 

In the Appendix we list the expressions for j-j”‘, p = 0, 1, 2, 3, which follow from 
integrating (2.3a) and using (2.2) without any constants of integration. 

where 8,,, is the Kronecker delta and the nonzero values of/?,, yi, Ji, si, and vi (for 
i > 0 only) are 

pj3) = ‘i 
2(i+ 1) ’ 

/?=3,2, 1, i>O, 

YY = 
- p + p 

2(ik3-b) ’ 
p=3,2,1, i>p-2, 

go-1) = - yi”’ f (p’ 
I 2(i$ 1 -p) ’ p=2’ I’ i >B, 

E!o) - 
- d!” + ,!I) 

, - 2ii-2)’ ’ 
i> 3. 

$2’ 1 
- $3’ 

I 2(i 12) ’ 
i> 3, 

F!‘) - 
- $2’ 

I - 2(i13), i>4, 

- c!‘) 
‘I!“= 2(iy4), i>5. 
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These expressions avoid large roundoff errors in a manner similar to that recom- 
mended in [2, p. 1181. The procedure can, of course, be extended to higher order 
systems. 
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